TMRAT MATHENETILS Jhe Excellence Key...

CODE:2101-AG-19-23-24

पजियन क्रमांक
REG.NO:-TMC -D/79/89/36

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E

EXAMINATION 2023-24

Time: 3 Hours		Maximum Marks : 80
CLASS - XII		
Sr. No.	SECTION - A This section comprises of very short answer type-questions (VSA) of 2 marks each	Ma rks
Q. 1	Given, $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right], I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $A^{2}=5 A+\lambda I$. Hence, $\lambda=$? (a) 23 (b)-23 (c) -7 (d) NONE	1
Q. 2	Which of the following is not true (a) Every skew-symmetric matrix of odd order is non-singular (b) If determinant of a square matrix is non-zero, then it is non singular (c) Cofactor of symmetric matrix is symmetric(d)Cofactor of a diagonal matrix is diagonal	1
Q. 3	If $A=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and $\left\|A^{3}\right\|=125$, then $\alpha=$ (a) ± 3 (b) ± 2 (c) ± 5 (d)	1

Q. 4	If $f(x)=\left\{\begin{array}{c}\frac{1-\cos 4 x}{x^{2}}, \text { when } x<0 \\ a, \text { when } x=0 \\ \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})}-4}, \text { when } x>0\end{array}\right.$, is continuous at $x=0$, then the value of ' a ' will be (a) 8 (b) -8 (c) 4 (d) None of these	1
Q. 5	If θ be the angle between the unit vectors \mathbf{a} and \mathbf{b}, then $\mathbf{a}-\sqrt{2} \mathbf{b}$ will be a unit vector if $\theta=$ (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{2 \pi}{3}$	1
Q. 6	Solution of $y d x-x d y=x^{2} y d x$ is (a) $y e^{x^{2}}=c x^{2}$ (b) $y e^{-x^{2}}=c x^{2}$ (c) $y^{2} e^{x^{2}}=c x^{2}$ (d) $y^{2} e^{-x^{2}}=c x^{2}$	1
Q. 7	For the following shaded area, the linear constraints except $x \geq 0$ and $y \geq 0$, are (a) $2 x+y \leq 2, x-y \leq 1, x+2 y \leq 8$ (b) $2 x+y \geq 2, x-y \leq 1, x+2 y \leq 8$ (c) $2 x+y \geq 2, x-y \geq 1, x+2 y \leq 8$ (d) $2 x+y \geq 2, x-y \geq 1, x+2 y \geq 8$	1
Q. 8	If vector $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k}$ and vector $\mathbf{b}=-2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$, then $\frac{\text { Projection of vector } \mathbf{a} \text { on vector } \mathbf{b}}{\text { Projection of vector } \mathbf{b} \text { on vector } \mathbf{a}}=$ (a) $\frac{3}{7}$ (b) $\frac{7}{3}$ (c) 3 (d) 7	1
Q. 9	$\int_{-1}^{1} \frac{x^{3}+\|x\|+1}{x^{2}+2\|x\|+1} d x=$ (a) $\log 2$ (b) $2 \log 2$ (c) $-\log 2$ (d) none of these	1

Visit us at www.agyatgupta.com

Q. 10	If $A=\left\|\begin{array}{ccc}-1 & 2 & 4 \\ 3 & 1 & 0 \\ -2 & 4 & 2\end{array}\right\|$ and $B=\left\|\begin{array}{ccc}-2 & 4 & 2 \\ 6 & 2 & 0 \\ -2 & 4 & 8\end{array}\right\|$, then B is given by (a) $B=4 A$ (b) $B=-4 A$ (c) $B=-A$ (d) $B=6 A$	1
Q. 11	Two tailors A and B earn Rs. 15 and Rs. 20 per day respectively A can make 6 shirts and 4 pants in a day while B can make 10 shirts and 3 pants. To spend minimum on 60 shirts and 40 pants, A and B work x and y days respectively. Then linear constraints except $x \geq 0, y \geq 0$, are (a) $15 x+20 y \geq 0,60 x+40 y \geq 0$ (b) $15 x+20 y \geq 0,6 x+10 y=10$ (c) $6 x+10 y \geq 60,4 x+3 y \geq 40$ ((d) $6 x+10 y \leq 60,4 x+3 y \leq 40$	1
Q. 12	If $\|\mathbf{a}\|=\|\mathbf{b}\|=1$ and $\|\mathbf{a}+\mathbf{b}\|=\sqrt{3}$, then the value of $(3 \mathbf{a}-4 \mathbf{b}) .(2 \mathbf{a}+5 \mathbf{b})$ is (a) -21 (b) (b) $-21 / 2(c)$ 21 (d) $21 / 2$	1
Q. 13	If I is a unit matrix of order 10 , then the determinant of I is equal to (a) 10 (b) 1 (c) $1 / 10$ (d) 9	1
Q. 14	Three coins are tossed. If one of them shows tail, then the probability that all three coins show tail, is (a) $\frac{1}{7}$ (b) $\frac{1}{8}$ (c) $\frac{2}{7}$ (d) $\frac{1}{6}$	1
Q. 15	Integrating factor of $\frac{d y}{d x}+\frac{y}{x}=x^{3}-3$ is (a) x (b) $\log x$ (c) $-x$ (d) e^{x}	1
Q. 16	The function $f: R \rightarrow R, f(x)=x^{2}, \forall x \in R$ is (a) Injection but not surjection (b)Surjection but not injection (c) Injection as well as surjection (d) Neither injection nor surjection	1
Q. 17	If $f(x)=\left\{\begin{array}{c}x+\lambda, x<3 \\ 4, x=3 \\ 3 x-5, x>3\end{array}\right.$ is continuous at $x=3$, then $\lambda=$ (a) 4 (b) 3(c) 2 (d) 1	1
Q. 18	If a line makes angles of 30° and 45° with x-axis and y-axis, then the angle made by it with z-axis is (a) 45° (b) 60° (c) 120° (d) None of these	1
	ASSERTION-REASON BASED QUESTIONS In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a) Both A and R are true and R is the correct explanation of A. (b) Both A and R are true but R is not the correct explanation of A. (c) A is true but R is false. (d) A is false but R is	

Visit us at www.agyatgupta.com

	true.	
Q. 19	Assertion (A) : The point of the function $(x-1)(x-2)^{2}$ at its maxima is $\frac{4}{3}$. Reason (R): $f^{\prime}(c)$ changes sign from positive to negative as x increases through c then the function attains a local maximum at $\mathrm{x}=\mathrm{c}$.	1
Q. 20	Assertion (A): If $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=225 \&\|\vec{a}\|=5$ then the value of $\|\vec{b}\|=3$ Reason (R): $\|\vec{a} \times \vec{b}\|^{2}+(\vec{a} \cdot \vec{b})^{2}=\|\vec{a}\|^{2}\|\vec{b}\|^{2}$	1
	SECTION - B This section comprises of very short answer type-questions (VSA) of 2 marks each	
Q. 21	Find the intervals in which the function f given by $f(x)=x^{3}+\frac{1}{x^{3}}, x \neq 0$ is (i) increasing (ii) decreasing .	2
Q. 22	Prove that : $\tan ^{-1}\left[\frac{\left\{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}\right\}}{\left\{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}\right\}}\right\}=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^{2}$. OR Write $\tan ^{-1}\left[\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right], x \in\left(\pi, \frac{3 \pi}{2}\right)$ in the simplest form .	2
Q. 23	For any vectors \vec{a}, show that $\|\vec{a} \times i\|^{2}+\|\vec{a} \times j\|^{2}+\|\vec{a} \times k\|^{2}=2\|\vec{a}\|^{2}$	2
Q. 24	Find the maximum slope of the curve $y=-x^{3}+3 x^{2}+2 x-27$. OR Separate the interval $\left[0, \frac{\pi}{2}\right]$ into sub intervals in which $f(x)=\sin ^{4} x+\cos ^{4} x$ is increasing or decreasing .	2
Q. 25	A man 2 metres high walks at a uniform speed of $5 \mathrm{~km} / \mathrm{hr}$ away from a lamp - post 6 metres high. Find the rate at which the length of his shadow increases.	2
	SECTION - C (This section comprises of short answer type questions (SA) of 3 marks each)	
Q. 26	Evaluate : $\int \frac{1}{\sin x-\sin 2 x} d x$.	3
Q. 27	Evaluate: $\int \frac{x^{2}}{x^{4}+x^{2}+16} d x$. OR	3

	Evaluate : $\int_{-1}^{\frac{1}{2}}\|x \cos (\pi x)\| d x$.	
Q. 28	The ratio of the number of boys to the number of girls in a class is $1: 2$. It is known that the probabilities of a girl and boy getting a first division are .25 and .28 respectively. Find the probability that a student chosen at random will get first division. OR From a set of 100 cards numbered 1 to 100 , one card is drawn at random. Find the probability that the number on the card is divisible by 6 or 8 , but not by 24 .	3
Q. 29	Solve the differential equation $\left(x^{2}-y x^{2}\right) d y+\left(x^{2} y^{2}+y^{2}\right) d x=0$ given that $\mathrm{y}=1$ when $\mathrm{x}=1$. OR Prove that $x^{2}-y^{2}=c\left(x^{2}+y^{2}\right)^{2}$ is the general solution of the differential equation $\left(x^{3}-3 x y^{2}\right) d x=c\left(y^{3}-3 x^{2} y\right) d y$ where c is a parameter .	3
Q. 30	If $x \sqrt{(1+y)}+y \sqrt{(1+x)}=0$ then $\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}$.	3
Q. 31	Solve the following linear programming problem (L.P.P) graphically. Maximize $Z=$ $x+2 y$ subject to constraints ; $x+2 y \geq 1002 x-y \leq 02 x+y \leq 200 x, y \geq 0$.	3
	SECTION - D (This section comprises of long answer-type questions (LA) of 5 marks each)	
Q. 32	Determine the equation of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines $\frac{x-8}{3}=\frac{y+9}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$. OR Find the equations of the line which intersects the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \& \frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}$ and passes through the point $(1,1,1)$.	5
Q. 33	Using integration, find the area of the triangle bounded by the lines $11=7 \mathrm{x}-2 \mathrm{y}, 19$ $=3 \mathrm{x}+2 \mathrm{y}$ and $\mathrm{x}-\mathrm{y}=3$.	5
Q. 34	Check whether the relation R on R defined as $\mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive. OR Prove that the function $f:[0, \infty) \rightarrow R$ Given by $f(x)=9 x^{2}+6 x-5$ is not invertible. Modify the co-domain of the function f to make it invertible, and hence find f^{-1}.	5
Q. 35	If A and B are two independent events such that $P(A \cap B)=\frac{1}{6}$ and $P(\bar{A} \cap \bar{B})=\frac{1}{3}$, find $\mathrm{P}(\mathrm{A}) \& \mathrm{P}(\mathrm{B})$.	5

	SECTION - E (This section comprises of 3 case study / passage - based questions of 4 marks each with two sub parts (i),(ii),(iii) of marks 1, 1, 2 respectively.The third case study question has two sub - parts of 2 marks each.)	
Q. 36	Case Study based-1 If there is a statement involving the natural number n such that (i) The statement is true for $n=1$ (ii) When the statement is true for $n=k$ (where k is some positive integer), then the statement is also true for $n=k+1$. Then, the statement is true for all natural numbers n. Also, if A is a square matrix of order n, then A^{2} is defined as $A A$. In general, $A^{m}=A A . . A(m$ times $)$, where m is any positive integer. Based on the above information, answer the following questions.	
i.	If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, then for any positive integer n, (a) $A^{n}=\left[\begin{array}{cc}3 n & -4 n \\ n & -n\end{array}\right]$ (b) $A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$ (c) $A^{n}=\left[\begin{array}{cc}3 n & -8 n \\ 1 & -n\end{array}\right]$ (d) $A^{n}=\left[\begin{array}{cc}1+3 n & -4 n \\ n & 1-3 n\end{array}\right]$	1
ii.	If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$, then $\left\|A^{n}\right\|$, where $n \in N$, is equal to (a) 2^{n} (b) 3^{n} (c) n (d) 1	1
iii.	If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then which of the following holds for all natural numbers $n \geq 1$? (a) $A^{n}=n A-(n-1) I$ (b) $A^{n}=2^{n-1} A-(n-1) I$ (c) $A^{n}=n A+(n-1) I$ (d) $A^{n}=2^{n-1} A+(n-1) I$ OR Let $A=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$ and $A^{n}=\left[a_{i j}\right]_{3 \times 3}$ for some positive integer n, then the cofactor of a_{13} is (a) a^{n} (b) $-a^{n}$ (c) $2 a^{n}$ (d) 0	2
Q. 37	Case Study based-3 A gardener wants to construct a rectangular bed of garden in a circular patch of land. He takes the maximum perimeter of the rectangular region as possible. (Refer to the images given below for calculations)	

Visit us at www.agyatgupta.com

i.	The perimeter of rectangle P is: a. $4 x+4 \sqrt{a^{2}-x^{2}}$ b. $x+\sqrt{a^{2}-x^{2}}$ c. $4 x+\sqrt{a^{2}-x^{2}}$ d. $x+4 \sqrt{a^{2}-x^{2}}$	1
ii.	To find the critical points put a. $\frac{d P}{d x}>0$ b. $\frac{d P}{d x}<0$ c. $\frac{d P}{d x}=0$ d. None of these	1
iii.	$\begin{aligned} & \text { Value of } y \text { is } \\ & \begin{array}{l} \text { a. } \frac{a}{2} \quad \mathrm{~b} \cdot \frac{a}{\sqrt{2}} \mathrm{c} \cdot 2 \mathrm{a} \text { d. } \sqrt{2} a \\ \text { If a rectangle of the maximum perimeter which can be inscribed in a circle of radius } \\ 10 \mathrm{~cm} \text { is square then the sides of the region } \\ \text { a. } 10 \sqrt{8} \mathrm{~cm} \mathrm{~b} .2 \sqrt{10} \mathrm{~cm} \mathrm{c.} 20 \sqrt{2} \mathrm{~cm} \text { d. } 10 \sqrt{2} \mathrm{~cm} \end{array} \end{aligned}$	2
Q. 38	Case Study based-3 From the point $(2,4,-1)$ to the line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$.	
i.	Find the equation of the perpendicular from the point on the line the length of perpendicular.	2
ii.	The length of perpendicular.	2
	"अवसर की प्रतीक्षा में मत बैठो । आज का अवसर ही सर्वोत्तम है \|"	

