Jhe Excellence Key...

(M.Sc, B.Ed., M.Phill, P.hd)

CODE:2101-AG-19-23-24

ARGET MATHEMA

पजियन क्रमांक

REG.NO:-TMC -D/79/89/36

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is

compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of

assessment (4 marks each) with sub parts.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2

Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has

been provided in the 2marks questions of Section E

EXAMINATION 2023 -24

Time : 1	3 Hours Maximum Marks : 8	50
CLASS	CLASS – XII MATHEMATIC	
Sr. No.	SECTION - A	Ma rks
	This section comprises of very short answer type-questions (VSA) of 2 marks each	
Q.1	Given, $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $A^2 = 5A + \lambda I$. Hence, $\lambda = ?$	1
	(a)23 (b)-23 (c) -7 (d) NONE	
Q.2	Which of the following is not true	1
	(a) Every skew-symmetric matrix of odd order is non-singular	
	(b) If determinant of a square matrix is non-zero, then it is non singular	
	(c) Cofactor of symmetric matrix is symmetric(d)Cofactor of a diagonal matrix is diagonal	
Q.3	If $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and $ A^3 = 125$, then $\alpha =$	1
	(a) ± 3 (b) ± 2 (c) ± 5 (d) 0	
L		

TMC/D/79/89

Q.4	If $f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2}, \text{ when } x < 0\\ a, \text{ when } x = 0\\ \frac{\sqrt{x}}{\sqrt{(16 + \sqrt{x})} - 4}, \text{ when } x > 0 \end{cases}$, is continuous at $x = 0$, then the value of 'a' will be (a) 8 (b) - 8 (c) 4 (d) None of these	1
Q.5	If θ be the angle between the unit vectors a and b , then $\mathbf{a} - \sqrt{2} \mathbf{b}$ will be a unit	1
	vector if $\theta = \pi$	
	(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{2\pi}{3}$	
Q.6	Solution of $ydx - xdy = x^2 ydx$ is	1
	(a) $ye^{x^2} = cx^2$ (b) $ye^{-x^2} = cx^2$ (c) $y^2e^{x^2} = cx^2$ (d) $y^2e^{-x^2} = cx^2$	
Q.7	For the following shaded area, the linear constraints except $x \ge 0$ and $y \ge 0$, are	1
	$2x+y=2$ $(a) 2x + y \le 2, x - y \le 1, x + 2y \le 8$ $(b) 2x + y \ge 2, x - y \le 1, x + 2y \le 8$ $(c) 2x + y \ge 2, x - y \ge 1, x + 2y \le 8$	
	(d) $2x + y \ge 2, x - y \ge 1, x + 2y \ge 8$	
Q.8	If vector $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$ and vector $\mathbf{b} = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$, then Projection of vector \mathbf{a} on vector \mathbf{b} Projection of vector \mathbf{b} on vector \mathbf{a} (a) $\frac{3}{7}$ (b) $\frac{7}{3}$ (c) 3 (d) 7	1
Q.9	$\int_{-1}^{1} \frac{x^3 + x + 1}{x^2 + 2 x + 1} dx =$	1
	(a) log 2 (b) 2log 2 (c) - log 2 (d) none of these	

TMC/D/79/89

Q.10		1
	If $A = \begin{vmatrix} 3 & 1 & 0 \\ -2 & 4 & 2 \end{vmatrix}$ and $B = \begin{vmatrix} 6 & 2 & 0 \\ -2 & 4 & 8 \end{vmatrix}$, then B is given by	
	(a) $B = 4A$ (b) $B = -4A$ (c) $B = -A$ (d) $B = 6A$	
0.11	$\begin{array}{c} (a) & b - 4n \\ (b) & b - 4n \\ (c) & b - 4n \\ (c) & b - n \\ (c) & b - 6n \\ $	
Q.II	Two failors A and B earn Rs. 15 and Rs. 20 per day respectively A can make 6 shirts and 4 pants in a day while B can make10 shirts and 3 pants. To spend minimum on 60 shirts and 40 pants, A and B work x and y days respectively. Then linear constraints except $x \ge 0$, $y \ge 0$, are (a) 15 x + 20y $\ge 0,60$ x + 40y ≥ 0 (b) 15 x + 20y $\ge 0,6x + 10y = 10$	1
	(c) $6x + 10y \ge 60, 4x + 3y \ge 40$ (d) $6x + 10y \le 60, 4x + 3y \le 40$	
Q.12	If $ \mathbf{a} = \mathbf{b} = 1$ and $ \mathbf{a} + \mathbf{b} = \sqrt{3}$, then the value of $(3\mathbf{a} - 4\mathbf{b}).(2\mathbf{a} + 5\mathbf{b})$ is	1
	(a) -21 (b) -21/2(c) 21 (d) 21/2	
Q.13	If I is a unit matrix of order 10, then the determinant of I is equal to(a) 10 (b)1 (c) $1/10$ (d)9	1
Q.14	Three coins are tossed. If one of them shows tail, then the probability that all three coins show tail, is (a) $\frac{1}{7}$ (b) $\frac{1}{8}$ (c) $\frac{2}{7}$ (d) $\frac{1}{6}$	1
Q.15	Integrating factor of $\frac{dy}{dx} + \frac{y}{x} = x^3 - 3$ is	1
	(a) x (b) $\log x$ (c) $-x$ (d) e^{x}	
Q.16	The function $f: R \to R$, $f(x) = x^2$, $\forall x \in R$ is	1
	(a) Injection but not surjection (b)Surjection but not injection	
	(c) Injection as well as surjection (d) Neither injection nor surjection	
Q.17	$\frac{(r+\lambda,r<3)}{(r+\lambda,r<3)}$	1
	If $f(x) = \begin{cases} x + 3, x + 3 \\ 4, x = 3 \\ 3x - 5, x > 3 \end{cases}$ is continuous at $x = 3$, then $\lambda = 1$	I
	(a) 4 (b) $3(c)$ 2 (d) 1	
Q.18	(a) + (b) = 3(b) = 2 - (a) + 1	1
	by it with z -axis is y-axis, then the angle made	1
	(a) 45° (b) 60° (c) 120° (d) None of these	
	ASSERTION-REASON BASED QUESTIONS	
	In the following questions, a statement of assertion (A) is followed by a statement of	
	Reason (R). Choose the correct answer out of the following choices. (a) Both A and	
	R are true and R is the correct explanation of A. (b) Both A and R are true but R is	
	not the correct explanation of A. (c) A is true but R is false. (d) A is false but R is	
TMC/D	79/89 3 P.T.O.	

	true.	
Q.19	Assertion (A): The point of the function $(x-1)(x-2)^2$ at its maxima is $\frac{4}{3}$.	1
	Reason (R) : $f'(c)$ changes sign from positive to negative as x increases through c then the function attains a local maximum at $x = c$.	
Q.20	Assertion (A): If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 225 \& \vec{a} = 5$ then the value of $ \vec{b} = 3$	1
	Reason (R): $\left \vec{a} \times \vec{b} \right ^2 + (\vec{a} \cdot \vec{b})^2 = \left \vec{a} \right ^2 \left \vec{b} \right ^2$	
	SECTION - B	
	This section comprises of very short answer type-questions (VSA) of 2 marks each	
Q.21	Find the intervals in which the function f given by $f(x) = x^3 + \frac{1}{x^3}, x \neq 0$ is (i)	2
	increasing (ii) decreasing .	
Q.22	Prove that : $\tan^{-1}\left[\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right] = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2.$	2
	OR	
	Write $\tan^{-1}\left[\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right], x \in \left(\pi, \frac{3\pi}{2}\right)$ in the simplest form.	
Q.23	For any vectors \vec{a} , show that $ \vec{a} \times i ^2 + \vec{a} \times j ^2 + \vec{a} \times k ^2 = 2 \vec{a} ^2$	2
Q.24	Find the maximum slope of the curve $y = -x^3 + 3x^2 + 2x - 27$.	2
	OR	
	Separate the interval $[0, \frac{\pi}{2}]$ into sub intervals in which $f(x) = \sin^4 x + \cos^4 x$ is	
	increasing or decreasing.	
Q.25	A man 2 metres high walks at a uniform speed of 5 km/hr away from a lamp - post 6 metres high. Find the rate at which the length of his shadow increases.	2
	SECTION - C	
	(This section comprises of short answer type questions (SA) of 3 marks each)	
Q.26	Evaluate : $\int \frac{1}{\sin x - \sin 2x} dx$.	3
Q.27	Evaluate: $\int \frac{x^2}{x^4 + x^2 + 16} dx$.	3
	OR	
TMC/D	/79/89 4 P.T.O.	

	Evaluate: $\int_{-1}^{\frac{1}{2}} x \cos(\pi x) dx$.	
Q.28	The ratio of the number of boys to the number of girls in a class is $1:2$. It is known that the probabilities of a girl and boy getting a first division are .25 and .28 respectively. Find the probability that a student chosen at random will get first division.	3
	OR	
	From a set of 100 cards numbered 1 to 100, one card is drawn at random. Find the probability that the number on the card is divisible by 6 or 8, but not by 24.	
Q.29	Solve the differential equation $(x^2 - yx^2)dy + (x^2y^2 + y^2)dx = 0$ given that $y = 1$	3
	when $x = 1$.	
	OR	
	Prove that $x^2 - y^2 = c(x^2 + y^2)^2$ is the general solution of the differential equation $(x^3 - 3xy^2)dx = c(y^3 - 3x^2y)dy$ where c is a parameter.	
Q.30	If $x\sqrt{(1+y)} + y\sqrt{(1+x)} = 0$ then $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$.	3
Q.31	Solve the following linear programming problem (L.P.P) graphically. Maximize $Z = x + 2y$ subject to constraints ; $x + 2y \ge 100 \ 2x - y \le 0 \ 2x + y \le 200 \ x, \ y \ge 0$.	3
	SECTION – D	
	(This section comprises of long answer-type questions (LA) of 5 marks each)	
Q.32	Determine the equation of the line passing through the point (1, 2, -4) and perpendicular to the two lines $\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$.	5
	OR	
	Find the equations of the line which intersects the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} & \frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$	
0.33	and passes infough the point $(1, 1, 1)$.	_
Q.35	Using integration, find the area of the triangle bounded by the lines $11 = 7x - 2y$, $19 = 3x + 2y$ and $x - y = 3$.	5
Q.34	Check whether the relation R on R defined as $R = \{(a, b): a \le b^3\}$ is reflexive, symmetric or transitive.	5
	OR	
	Prove that the function $f:[0,\infty) \rightarrow R$ Given by $f(x) = 9x^2 + 6x - 5$ is not	
	invertible. Modify the co-domain of the function f to make it invertible, and hence find f^{-1} .	
Q.35	If A and B are two independent events such that $P(A \cap B) = \frac{1}{6}$ and $P(\overline{A} \cap \overline{B}) = \frac{1}{3}$, find	5
	P(A) & P(B).	

TMC/D/79/89

	SECTION – E	
	(This section comprises of 3 case study / passage – based questions of 4 marks each with two sub parts (i),(ii),(iii) of marks 1, 1, 2 respectively. The third case study question has two sub – parts of 2 marks each.)	
Q.36	Case Study based-1	
	If there is a statement involving the natural number n such that (i) The statement is true for $n = 1$	
	(ii) When the statement is true for $n=k$ (where k is some positive integer), then	
	the statement is also true for $n=k+1$.	
	Then, the statement is true for all natural numbers <i>n</i> .	
	Also, if A is a square matrix of order n, then A^2 is defined as AA. In general, $A^m = AAA(m \text{ times})$, where m is any positive integer.	
	Based on the above information, answer the following questions.	
i.	If $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$, then for any positive integer <i>n</i> ,	1
	(a) $A^{n} = \begin{bmatrix} 3n & -4n \\ n & -n \end{bmatrix}$ (b) $A^{n} = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$ (c) $A^{n} = \begin{bmatrix} 3n & -8n \\ 1 & -n \end{bmatrix}$ (d) $A^{n} = \begin{bmatrix} 1+3n & -4n \\ n & 1-3n \end{bmatrix}$	
ii.	If $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, then $\begin{vmatrix} A^n \end{vmatrix}$, where $n \in N$, is equal to	1
	(a) 2^n (b) 3^n (c) n (d) 1	
iii.	If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which of the following holds for all natural numbers $n \ge 1$?	2
	(a) $A^n = nA - (n-1)I$ (b) $A^n = 2^{n-1}A - (n-1)I$	
	(c) $A^n = nA + (n-1)I$ (d) $A^n = 2^{n-1}A + (n-1)I$	
	Let $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$ and $A^n = \begin{bmatrix} a_{ij} \end{bmatrix}_{3\times 3}$ for some positive integer <i>n</i> , then the cofactor of a_{13}	
	is	
	(a) a^n (b) $-a^n$ (c) $2a^n$ (d) 0	
Q.37	Case Study based-3	
	A gardener wants to construct a rectangular bed of garden in a circular patch of land. He takes the maximum perimeter of the rectangular region as possible. (Refer	
	to the images given below for calculations)	

-		T
i .	The perimeter of rectangle P is: a. $4x + 4\sqrt{a^2 - x^2}$ b. $x + \sqrt{a^2 - x^2}$ c. $4x + \sqrt{a^2 - x^2}$ d. $x + 4\sqrt{a^2 - x^2}$	1
ii.	To find the critical points put a. $\frac{dP}{dx} > 0$ b. $\frac{dP}{dx} < 0$ c. $\frac{dP}{dx} = 0$ d. None of these	1
iii.	Value of y is a. $\frac{a}{2}$ b. $\frac{a}{\sqrt{2}}$ c.2a d. $\sqrt{2}a$ OR If a rectangle of the maximum perimeter which can be inscribed in a circle of radius 10 cm is square then the sides of the region a. $10\sqrt{8}$ cm b. $2\sqrt{10}$ cm c. $20\sqrt{2}$ cm d. $10\sqrt{2}$ cm	2
Q.38	Case Study based-3 From the point (2, 4, -1) to the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$.	
i.	Find the equation of the perpendicular from the point on the line the length of perpendicular.	2
ii.	The length of perpendicular.	2
	"अवसर की प्रतीक्षा में मत बैठो । आज का अवसर ही सर्वोत्तम है ।"	